
A Framework for Automatic
Functional Testing Based on

Formal Specifications

Shaoying Liu* and Shin Nakajima+
*Department of Computer Science

Hosei University, Japan
+NII, Japan

Emails: sliu@hosei.ac.jp, nkjm@nii.ac.jp

プレゼンター
プレゼンテーションのノート
fdh

mailto:sliu@hosei.ac.jp

Overview
Motivation

Framework for automatic specification-
based testing

Conclusion and future research directions

1. Motivation

(1) Understanding necessary activities and
potential technical challenges for automatic
specification-based testing.

(2) Establishing a foundation for building automatic
specification-based testing tools.

(3) Exploring new and/or better techniques for
automatic-based testing (e.g., functional
scenario-based testing and integration of the
Hoare logic and test case generation for
debugging)

Goals of automatic testing

1. Every function defined in the specification is tested
(at least once) (User’s view).

2. Every representative program path is traversed or
some required coverage criteria are satisfied.
(Program’s view)

3. By testing every function defined in the
specification, all of the bugs in the program are
detected. (ideal goal for both the user and the
programmer)

2. Framework for automatic
specification-based testing

The framework shows 10 major activities necessary for automatic
specification-based testing:

(1) Deriving test conditions from the specification
(2) Generating test cases based on test conditions
(3) Translating abstract test cases to concrete ones
(4) Generating test environment
(5) Running the program with test cases and managing test

result data
(6) Translating test result from concrete form to abstract form
(7) Analyzing test results for bug discovery
(8) Debugging
(9) Eliminating bugs
(10) Managing and reusing test data and related documents

(1) Deriving test conditions from
the specification

The objective of test case generation is to
exercise every functional scenario defined in
the specification. Each functional scenario
describes an independent function in terms of
input-output relation, and is expressed as a
conjunction of a test condition and a defining
condition. A specification is equivalent to a functional
scenario form, which is a conjunction of all functional
scenarios defined in the specification.

Let S(Siv,Sov)[Spre,Spost] denote an operation specification.

Definition 1. (FSF)
Let Spost≡C₁∧D₁∨C₂∧D₂∨⋅⋅⋅∨Cn∧Dn,
Ci: guard condition
Di: defining condition. i = 1,…,n.
Then, a functional scenario form (FSF) of S is:
(~Spre∧C₁∧D₁)∨(~Spre∧C₂∧D₂)∨⋅⋅⋅∨

(~Spre∧Cn∧Dn)
where
fi = ~Spre∧Ci∧Di is called a functional

scenario) and
~Spre∧Ci is called a test condition

Program

Satisfy?

Specification
process A(x: int) y: int

pre x > 0

post x > 10 and y = x + 1 or

x <= 10 and y = x – 1

end_process

int A(int x) {

If (x > 0) {

if (x > 10) y = x + 1;

else y = x – 1;

return y; }

else System.out.println(“the

pre is violated”) }

f_1
f_2
…
f_n

p_1
p_2
…

p_m
…

Functional scenarios Program paths

Scenario-based testing: a strategy for ``divide and conquer’’

Functional scenario:

~Apre ∧Ci ∧Di

(i=1,…,n)

(2) Generating test cases based
on test conditions

Let G denote a test set generator (TSG), which
is a function from the universal set of logical
expressions LE to the universal set of test
sets TS, formally,

G: LE → TS

A decompostional approach to test case
generation (only two rules are shown here):

(1) G((~Spre∧C₁∧D₁)∨(~Spre∧C₂∧D₂)∨⋅⋅⋅

∨(~Spre∧Cn∧Dn))=
G(~ Spre∧C₁∧D₁)∪G(~ Spre∧C₂∧D₂)∪ ⋅⋅⋅

∪ G(~ Spre∧Cn∧Dn)

A test set generated for a specification is equal
to the union of all test sets generated for all the
functional scenarios of the specification that take both
the pre- and postconditions into account.

(2) G(~ Spre∧C1∧D1

G(~Spre∧C1)

Test set generation from a functional scenario
is made by generating the test set from its
test condition.

(3) Translating abstract test
cases to concrete ones

Test cases generated from a specification usually conforms to
the specification language syntax and therefore may not be
directly used by the program under test. A translation from
the abstract test cases to concrete ones that can be used by
the program is necessary.

Considering the fact that there are many possibilities of using
concrete data structures to implement abstract data types in
programs, automation of such a translation can be a challenge
due to complex data structures.

(4) Generating test environment

To run the program with the generated test
cases, a test environment, called driving
module, must be automatically created. The
driving module is intended to insert probs in
appropriate places of the subprogram under
test and call the subprogram with the test
cases.

(5) Running the program with test cases
and managing test result data

The driving module is activated so that the
subprogram under test is executed with the
supplied test cases. The test result must be
collected for test result analysis in the next
step. The challenge lies in the collection of all
the produced or updated “output’’ values due
to the scale or the complexity of the data
structures.

(6) Translating test result from
concrete form to abstract form

The actual test result, which is a set of
``output’’ values, must be translated into
expressions in the abstract form that conforms
to the specification language syntax for test
result analysis in the next step. The reason is
that the “evaluator’’ for the formal specification
language can only deal with expressions
in the abstract form.

(7) Analyzing test results for bug
discovery

In this step, a test oracle is automatically
derived from the specification, which is condition given
below, and the test oracle is evaluated to determine
whether any bug exists in the program.

Definition 3.1: Let T be a test set. If the condition
∃t∈T ⋅

Spre(t) ∧ ¬ Spost(t, P(t))

holds, it indicates the existence of a bug in program P.

A(x: int) y: int
pre x > 0
post x > 10 ∧ y = x + 1 ∨

x <= 10 ∧ y = x – 1

Functional scenarios:
(1) x > 0 ∧ x > 10 ∧ y = x + 1
(2) x > 0 ∧ x <= 10 ∧ y = x – 1
(3) x <= 0 (optional)

Specification

x > 0

y = x * 1

x > 10

T

T

F

F

System.out.println
(“the precondition
is violated”)

Program

1 2 3

Test case generation

Test result analysis

y = x - 1

x y Apre Apost Apre ∧ ¬ Apost

15 15 true false true

5 4 true true false

(8) Debugging
Debugging is often perceived as an activity
independent of testing, but if the objective of
automatic testing is to detect all bugs,
automatic debugging should be considered
as part of the testing process.

Automatic debugging has long been a challenge
and there is still no effective technique for handling
this problem, but combining the Hoare logic and
automatic test case generation may lead to a
possible solution.

(9) Eliminating bugs
Automatic elimination of bugs is not usually
counted as part of the automatic testing
process, but if we wish to achieve the effect
of removing all bugs by only pressing one
button, elimination of bugs must be taken
into account. This task is another great
challenge, and perhaps no satisfactory solution
can be worked out in the near future.

(10) Managing and reusing test
data and related documents

To support all the test activities, test data and the related
information must be stored and managed properly.

The information can be classified into three categories:
(1)documents, (2) test data, and (3) bug data.

The documents include the specification from which test cases
are generated and the program under testing. The test data
include test cases in the abstract form, test cases in the
concrete form, test results in the concrete form, test results in
the abstract form, and traversed program paths. The bug
data include the bug descriptions, the program statements or
conditions containing bugs revealed, and the program paths
containing bugs.

3. Conclusion and future research
directions

3.1 Conclusion

We describe a framework that covers all of the
major activities necessary for automatic
specification-based testing.
The framework establishes a foundation for building
automatic specification-based testing tools.
The framework presents some preliminary ideas for
a new approach to some test activities such as test
case generation and debugging.

3.2 Future research directions

A theoretical foundation for automatic
specification-based testing.

More effective and efficient test case
generation methods.

Effective techniques for automatic debugging.

Development of an automatic specification-
based testing environment.

Thank you !

	A Framework for Automatic Functional Testing Based on Formal Specifications
	Overview
	1. Motivation
	Goals of automatic testing
	2. Framework for automatic specification-based testing
	スライド番号 6
	(1) Deriving test conditions from the specification
	スライド番号 8
	スライド番号 9
	(2) Generating test cases based on test conditions
	スライド番号 11
	スライド番号 12
	(3) Translating abstract test cases to concrete ones
	(4) Generating test environment
	(5) Running the program with test cases and managing test result data
	(6) Translating test result from concrete form to abstract form
	(7) Analyzing test results for bug discovery
	スライド番号 18
	(8) Debugging
	(9) Eliminating bugs
	(10) Managing and reusing test data and related documents
	3. Conclusion and future research directions
	スライド番号 23
	スライド番号 24

