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Dynamic Architecture

 Service-oriented computing enables 
dynamic service composition and 
configuration 
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How to Test Dynamic Changes?

 To revalidate the re-composed and re-
configured service-based systems 
 Re-select test cases
 Re-schedule test execution 
 Re-deploy test runners 
 …. 

 The challenges: changes occur ONLINE
 Uncontrolled 
 Un-predictable 
 Distributed 
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New Testing Capabilities Required

 Adaptive testing 
 The ability to sense changes in target 

software systems and environment, and to 
adjust test accordingly. 

 Dynamic testing 
 The ability to re-configure and re-compose 

tests, and to produce, on-demand, new test 
data, test cases, test plan and test 
deployment. 

 Collaborative testing
 The ability to coordinate test executions that 

are distributed dispersed. 
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The MAST Framework

 Multi-Agent based Service Testing 
Framework [Bai06, Xu06, Bai07, Ma10]
 MAS is characterized by persistence, 

autonomy, social ability and reactivity
 Test agents are defined to simulate 

distributed service testing  
 Test Runners simulate autonomous user 

behaviors 
 Runners are coordinated to simulate diversified 

usage scenarios

76/16/2011



Agent Intelligence is Key to Test 
Effectiveness
 How to simulate users behavior?
 How to sense and react to changes?
 How to collaborate to simulate various 

scenarios?
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Architecture Overview
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Basic Test Agent Definition 

 K: the set of knowledge 
 E: the set of events 
 A: the set of agent actions 
 : the interpreter that derives an agent’s 

action sequences based on its knowledge 
and triggering events 
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Two Agent Types

 Test Coordinator 
 Analyze test requirements, generate test 

plans, create test runners, and allocate 
tasks to test runners. 

 Test Runner
 Accept test cases, carry test tasks to target 

host computers, and exercise test cases on 
the service under test. 
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Test Coordinator

 Knowledge 
 <Services, TestCases, Runners, Tasks>

 Runners:=<ID, state, task>
 Tasks:=<sID, tcID, result>

 Actions 
 Test Preparation

 ParseTestScenario, GenerateRunner

 Test Execution
 SelectRunner, SelectTestCase, AllocateTestTask, DeployRunner

 Events
 TEST_PARSED_OK, TEST_PARSED_ERROR
 START_TEST
 RUNNER_OK, RUNNER_NOT_AVAILABLE, GENERATE_RUNNER_COMPLETE
 RUNNER_REQUEST_TASK, RUNNER_SEND_RESULT, RUNNER_UPDATE
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Test Runner

 Knowledge
 <Hosts, Task, Configuration>

 Hosts:=<URL, Resources>
 Configuration:=<hID, tID, Parameters>

 Actions 
 Coordination

 AcceptTask, ReturnResult, SyncState
 Execution

 Migrate, ExecuteTask, CollectResult
 Decision

 SelectHost, RequireTestTask, ConfigTest
 Events

 Task_Arrival, Task_Finish
 Resource_Error, Host_Error, Host_Update
 Migration
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Interpreter

 Action rules identify the actions to be 
triggered when certain events occur. 
 assertion  action 

 assertion: predicates of system status after event 
occurs

 To dynamic adjust behavior according to 
pre-defined rules and strategies
 Agent decision making 
 Reactive to changes 
 Adaptive behavior
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Interpreter
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Agent-Based Simulation Testing 

 The generic agent design can be applied to 
various testing tasks with specially designed 
domain knowledge, events, actions, and 
rules. 

 Test agents automatically adjust test plans 
and test cases to meet test objectives. 
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Case Study 1: Performance Testing

 Performance testing analyzes system behavior under 
different usage scenarios and workloads. 
 E.g. upper limit of capacity and bottlenecks under extreme 

load

 Two key parameters
 Test scenarios, the complexity of test cases
 Workloads, the number of concurrent requests

 Case study objective
 Try-and-test manual approach  Agents autonomous 

decision for adaptive selection of scenarios and workloads
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Case Study 1: Agent Design 
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Case Study 1: Experiments

 Analyze the SUT’s memory usage: read file 
and merge data in memory 
 Services deployed on Tomcat application server.
 Scenario #1

 Service is implemented using Java “StringBuilder” 
data type with little extra memory space.

 Scenario #2
 Service is implemented using Java “String” data type 

which takes up extra memory space for object 
construction. 

 Scenario #3
 Simulate changes in server memory configuration of 

memory restrictions. 
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Case Study 1: Results
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Case Study 2: Coverage Testing

 Coverage testing is to select a subset of 
test cases to cover as many as software 
features. 

 The problem
 TestEfficiency = number of features covered / 

number of test cases selected 

 Case study objective
 To coordinate test agents working in parallel 

with complementary coverage achievements 
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Case Study 2: Agent Design 
 Coverage Matrix

 Similarity algorithm 
is used to calculate 
the distance 
between any two 
coverage sets. 
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Case Study 2: Experiments

 Two SUTs are exercised, each has 100 code 
blocks and 1000 test cases. 
 Scenario #1: test cases are sparsely overlapped, 

and each case has a low coverage (2%)

 Scenario #2: test cases are densely overlapped

 10 runners are deployed for each test. 
 Initialized with a randomly selected set of test 

cases 
 Runner cache result threshold:  3
 Coordinator synchronize threshold: 9 
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Case Study 2: Results
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Case Study 2: Results
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Conclusion

 SOA systems impose new requirements of 
automatic and collaborative testing. 

 Agent-based simulation provides a new way 
for SOA testing 
 Distributed deployment and dynamic migration 
 Autonomous user behavior 
 Collaborative usage scenario 
 Adaptive to environment changes

 Abstract agent model to be instantiated to 
address different testing tasks

 Experiments show promising improvements 
compared with conventional approaches
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Future Work

 Agent design 
 Joint intention model for agent 

collaboration 
 Improvement of experiments 

 Scale and complexity
 Simulation on the cloud infrastructure
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