Design of Intelligent Agents for
Collaborative Testing of
Service-Based Systems

Xiaoying BAI and Bin CHEN

Dept. of CS&T, Tsinghua University,
Beljing, China, 100084

Bo MA and Yunzhan GONG

Research Institute of Networking
Technology, BUPT,

| (ot Beijing, China, 100876

Outline

» Research motivation
» Test agent design

» Agent-based simulation testing
Performance testing
Coverage testing

» Conclusion and future work

6/16/2011

Outline

» Research motivation
®

®

6/16/2011

2.10315300g

Dynamic Architecture

» Service-oriented computing enables
dynamic service composition and
configuration

A1Indag

r
processOrder

r

placeCharge

processOrder T

placeCharge

v
. orderBook & ‘

orderBook

9.101SY00¢

Bysiqng yueg

sendBook

[@2aeq Jaysigqng 1Ued

6/16/2011 4

How to Test Dynamic Changes?

» To revalidate the re-composed and re-
configured service-based systems

Re-select test cases
Re-schedule test execution
Re-deploy test runners

» The challenges: changes occur ONLINE
Uncontrolled
Un-predictable
Distributed

6/16/2011

New Testing Capabilities Required

» Adaptive testing

The ability to sense changes in target
software systems and environment, and to
adjust test accordingly.

» Dynamic testing

The abiliay to re-configure and re-compose
tests, and to produce, on-demand, new test
data, test cases, test plan and test
deployment.

» Collaborative testing

The ability to coordinate test executions that
are distributed dispersed.

6/16/2011

The MAST Framework

» Multi-Agent based Service Testing
Framework [Bai06, Xu06, Bai07, Ma10]

MAS is characterized by persistence,
autonomy, social ability and reactivity

Test agents are defined to simulate
distributed service testing

Test Runners simulate autonomous user
behaviors

Runners are coordinated to simulate diversified
usage scenarios

6/16/2011 7

Agent Intelligence is Key to Test
Effectiveness

» How to simulate users behavior?
- How to sense and react to changes?

» How to collaborate to simulate various
scenarios?

The Needs

Environment Knowledge Representation
Change Events Capturing
Adaptation and Collaboration Rules

6/16/2011

Architecture Overview

Multi-Agent Based
Service Testing Framework

Test Coordinator

Test Runner

‘

Services

6/16/2011 9

Outline

&
» Test agent design

®

6/16/2011

10

Basic Test Agent Definition

TestAgent =< K,E,A, O >
K: the set of knowledge
E: the set of events
A: the set of agent actions

®: the interpreter that derives an agent’ s
action sequences based on its knowledge
and triggering events

6/16/2011 11

Two Agent Types

» Test Coordinator

Analyze test requirements, generate test
plans, create test runners, and allocate
tasks to test runners.

» Test Runner

Accept test cases, carry test tasks to target
host computers, and exercise test cases on
the service under test.

6/16/2011 12

Test Coordinator

» Knowledge

<Services, TestCases, Runners, Tasks>
Runners:=<ID, state, task>
Tasks:=<sID, tcID, result>

» Actions
Test Preparation
ParseTestScenario, GenerateRunner

Test Execution
SelectRunner, SelectTestCase, AllocateTestTask, DeployRunner

» Events
TEST_PARSED_OK, TEST_PARSED ERROR
START _TEST
RUNNER_OK, RUNNER_NOT_AVAILABLE, GENERATE_RUNNER_COMPLETE
RUNNER_REQUEST_TASK, RUNNER_SEND_RESULT, RUNNER_UPDATE

6/16/2011

13

Test Runner

» Knowledge

<Hosts, Task, Configuration>
Hosts:=<URL, Resources>
Configuration:=<hID, tID, Parameters>
» Actions
Coordination
AcceptTask, ReturnResult, SyncState
Execution
Migrate, ExecuteTask, CollectResult
Decision
SelectHost, RequireTestTask, ConfigTest
» Events
Task_Arrival, Task Finish

Resource_Error, Host_Error, Host_Update
Migration

6/16/2011

14

Interpreter

» Action rules identify the actions to be
triggered when certain events occur.

assertion = action

assertion: predicates of system status after event
OCCurs

» To dynamic adjust behavior according to
pre-defined rules and strategies
Agent decision making
Reactive to changes
Adaptive behavior

6/16/2011 15

Interpreter

Action Actlon Actlon
~— h Planning ” Identification

Rule
Matching
A

Event p
Capturing Extraction

6/16/2011

Page 16

Outline

®

®

» Agent-based simulation testing
Performance testing
Coverage testing

6/16/2011

17

Agent-Based Simulation Testing

» The generic agent design can be applied to
various testing tasks with specially designed
domain knowledge, events, actions, and
rules.

» Test agents automatically adjust test plans
and test cases to meet test objectives.

6/16/2011 18

Case Study 1: Performance Testing

» Performance testing analyzes system behavior under
different usage scenarios and workloads.

E.g. upper limit of capacity and bottlenecks under extreme
load

» Two key parameters
Test scenarios, the complexity of test cases
Workloads, the number of concurrent requests
» Case study objective

Try-and-test manual approach > Agents autonomous
decision for adaptive selection of scenarios and workloads

6/16/2011 19

Case Study 1: Agent Design

Event Rules
Condition _ Action _ workload = » f (complexity;) x load,
Start FindComplexity I I
Dtar (cMin, cMax) &
Over greater(this.cCur, cMin)A | FindCompleXity [P\ = e = o= o - o o - o - o - - - - -
L \ell null(runner.1Cur) (cMin, cCur) TC !
oac - — Decroase- Test Case |
greater (this.cCur, cMin)A Complexity dapti CONTROL
equals (runner.lCur, IMin) ' (c CI‘)ul)) Adaption I
Licht less(this.cCur, cMax)A FindComplexity |
e null (runner.1Cur) (cCur, cMax) |
Load
— Therense: Test Case Task Response |
less(this.cCur, cMax)A ‘ . : A i
Y Complexity Setting Allocation ime |
equals (runner.ICur, IMax) (cCur)) I
Event Ruls | — B “‘_) _Hes_n:s.e_l
| Condition Action Concurrency Test - —- e I
| S . FindLoad Setting Execution o ol
Over | greater(this.ICur, IMin) (IMin, 1Cur) I
Load et Decrease- |
equals(this.ICur, IMin) request() e - I
~ques oncurrency
Light less(this.ICur, IMax) (IElllllldLliﬁl) ATABLItoOn CDNTRDL:
Load s | Tncrease: [or e e i e SRR e
equals(this.1Cur, IMax) request()

Case Study 1: Experiments

» Analyze the SUT’ s memory usage: read file
and merge data in memory

Services deployed on Tomcat application server.

Scenario #1

Service is implemented using Java “StringBuilder”
data type with little extra memory space.

Scenario #2

Service is implemented using Java ”Stringf’ data type
which takes up extra memory space for object
construction.

Scenario #3

Simulate changes in server memory configuration of
memory restrictions.

6/16/2011 21

Case Study 1: Results

= = . L] = o T | o

Test Result of Scenario #1 i

Test Result of Scenario #2 |l

— 600

Test Result of Scenario #3

~ 100

a
7
& =1 s00
7
5 7
— 500
4 6
~ 400
3 L
. CCur
2 4 — 300
| Cur
1 3
- 2gg =———waorkload
0 2
1
]

44
-0
1 23456 7 8 9101112131415161718

6/16/2011

22

Case Study 2: Coverage Testing

» Coverage testing is to select a subset of
test cases to cover as many as software
features.

» The problem

TestEfficiency = number of features covered /
number of test cases selected

» Case study objective

To coordinate test agents working in parallel
with complementary coverage achievements

6/16/2011 23

Case Study 2: Agent Design

Runner w.
B

Coordinator

Test Case Coverage
tey | tey | tes
1110 N

Block Coverage

© o

A 4

Runner 4

=¥ Runner

> Runner

1 (1 [1]. 5
(1)
o/
1 v h
Test Case Coverage @
s Synchrenjze
Initialize @ tep [tep [tes | . l y om _&COV
P A
4} 1 0
F 3 "®
Cached
bey, bea, bes ...
@ Result {cl c2» Mc3, }
v (:) (:)
Coverage Matrix Block CIwerage
v
by | by | . @ Select _@_ by | by
tc, | 0| 1| .. Tes I 1 1 1| ..
te, | 1 1| . “@
Exe ute Collect
Test Coverage
Runner 7)
A, F an " y
w ir\y
SuUT Coverage
Agent

» Coverage Matrix

CM =[covj;]mxn:

covj; =
0, b; ¢ Cov(tc;)
» Similarity algorithm

is used to calculate
the distance
between any two
coverage sets.

Dis(s;,s;) =1-

6/16/2011

24

Case Study 2: Experiments

» Two SUTs are exercised, each has 100 code
blocks and 1000 test cases.

Scenario #1.: test cases are sparsely overlapped,
and each case has a low coverage (2%)

| Cov(tc;)M Cov(tc;) [<1%
Scenario #2: test cases are densely overlapped
| Cov(tc;) N Cov(tc;) [= 20%
» 10 runners are deployed for each test.

Initialized with a randomly selected set of test
cases

Runner cache result threshold: 3
Coordinator synchronize threshold: 9

6/16/2011 25

Case Study 2: Results

Scenario #1

Test Rounds | Runnerl | Runner2 | Runner3 | Runnerd | Runner5 | Runner6 | Runner? | Runner8 | Runner9 | Runnerl(
#1 10 10 10 10 10 10 10 10 10 10
#2 20 20 20 20 20 20 20 20 20 20
3 30 30 30 30 30 30 30 30 30 30
Coﬁgd“““or 06 06 06 06 06 06 96 96 96 06
yne
#5 100 99 99 99 99 100 99 99 100 a9
#6 100 100 100 100 100 100 100
T A ST
Scenario #2
Test Rounds | Runnerl | Runner2 | Runner3 | Runner4d | Runner5 | Runner6 | Runner? | Runner® | Runner9 | Runnerl0
#1 10 10 10 10 10 10 10 10 10 10
#2 18 18 18 18 18 18 18 18 18 18
3 22 22 22 22 22 22 22 22 22 22

Coordinator
Sync

Coordinator

Sync 100 100 100 100 100 100 100 100 100 100
= LU U UL LU UU UL U U U U
6/16/2011 Page 26

Case Study 2: Results

Test Rounds | Runner! | Runner? | Runner3 | Runner4 | Runner’ | Runner6 | Runner? | Runner8 | Runner9 | Runnerl(
#1 10 10 10 10 10 10 10 10 10 10
#) 19 19 2 19 18 19 19 19 2 17
#3 26 26 29 Al 27 20 2 26 Al 2
#4 33 3 36 35 34 35 33 33 33 33
#NR 07 03 05 06 05 03 05 03 03 06
#35 09 100 99 08 06 08 08 06 08 09
#55 100 100 100 100 100 100 100 100 100 100
6/16/2011 27

Outline

» Conclusion and future work

6/16/2011

28

Conclusion

- SOA systems impose new requirements of
automatic and collaborative testing.

» Agent-based simulation provides a new way
for SOA testing
Distributed deployment and dynamic migration
Autonomous user behavior
Collaborative usage scenario
Adaptive to environment changes

» Abstract a.?ent model to be instantiated to
address different testing tasks

» Experiments show promising improvements
compared with conventional approaches

6/16/2011

Future Work

» Agent design

Joint intention model for agent
collaboration

» Improvement of experiments
Scale and complexity
» Simulation on the cloud infrastructure

6/16/2011

30

Thank youl!

Xiaoying Bai

Ph.D, Associate Professor

Department of Computer Science and
Technology,

Tsinghua University

Beijing, China, 100084
Phone: 86-10-62794935
Email: baixy@tsinghua.edu.cn

	Design of Intelligent Agents for Collaborative Testing of �Service-Based Systems�
	Outline
	Outline
	Dynamic Architecture
	How to Test Dynamic Changes?
	New Testing Capabilities Required
	The MAST Framework
	Agent Intelligence is Key to Test Effectiveness
	Architecture Overview
	Outline
	Basic Test Agent Definition
	Two Agent Types
	Test Coordinator
	Test Runner
	Interpreter
	Interpreter
	Outline
	Agent-Based Simulation Testing
	Case Study 1: Performance Testing
	Case Study 1: Agent Design
	Case Study 1: Experiments
	Case Study 1: Results
	Case Study 2: Coverage Testing
	Case Study 2: Agent Design
	Case Study 2: Experiments
	Case Study 2: Results
	Case Study 2: Results
	Outline
	Conclusion
	Future Work
	Thank you!�

