
Department of Computer Science and Technology , Tsinghua University

Design of Intelligent Agents for
Collaborative Testing of
Service-Based Systems

Xiaoying BAI and Bin CHEN
Dept. of CS&T, Tsinghua University,

Beijing, China, 100084

Bo MA and Yunzhan GONG
Research Institute of Networking

Technology, BUPT,
Beijing, China, 100876

16/16/2011

Outline

 Research motivation
 Test agent design
 Agent-based simulation testing

 Performance testing
 Coverage testing

 Conclusion and future work

26/16/2011

Outline

 Research motivation
 Test agent design
 Agent-based simulation testing

 Performance testing
 Coverage testing

 Conclusion and future work

36/16/2011

Dynamic Architecture

 Service-oriented computing enables
dynamic service composition and
configuration

46/16/2011

processOrder

placeCharge

orderBook

Bank
Publisher

Bookstore

Bookstore

processOrder

placeCharge

orderBook

Publisher
Security

sendBook

Parcel
Bank

How to Test Dynamic Changes?

 To revalidate the re-composed and re-
configured service-based systems
 Re-select test cases
 Re-schedule test execution
 Re-deploy test runners
 ….

 The challenges: changes occur ONLINE
 Uncontrolled
 Un-predictable
 Distributed

56/16/2011

New Testing Capabilities Required

 Adaptive testing
 The ability to sense changes in target

software systems and environment, and to
adjust test accordingly.

 Dynamic testing
 The ability to re-configure and re-compose

tests, and to produce, on-demand, new test
data, test cases, test plan and test
deployment.

 Collaborative testing
 The ability to coordinate test executions that

are distributed dispersed.

66/16/2011

The MAST Framework

 Multi-Agent based Service Testing
Framework [Bai06, Xu06, Bai07, Ma10]
 MAS is characterized by persistence,

autonomy, social ability and reactivity
 Test agents are defined to simulate

distributed service testing
 Test Runners simulate autonomous user

behaviors
 Runners are coordinated to simulate diversified

usage scenarios

76/16/2011

Agent Intelligence is Key to Test
Effectiveness
 How to simulate users behavior?
 How to sense and react to changes?
 How to collaborate to simulate various

scenarios?

86/16/2011

The Needs

Environment Knowledge Representation
Change Events Capturing
Adaptation and Collaboration Rules

Architecture Overview

6/16/2011 9

Internet

Internet

Know-
ledge

EventsEventsEvents

ActionsActionsActions

Inter-
preter

Test Coordinator

Know-
ledge

EventsEventsEvents

ActionsActionsActions

Inter-
preter

Test Runner

Know-
ledge

EventsEventsEvents

ActionsActionsActions

Inter-
preter

Test Runner

…………

…………

Services

Services

Outline

 Research motivation
 Test agent design
 Agent-based simulation testing

 Performance testing
 Coverage testing

 Conclusion and future work

106/16/2011

Basic Test Agent Definition

 K: the set of knowledge
 E: the set of events
 A: the set of agent actions
 : the interpreter that derives an agent’s

action sequences based on its knowledge
and triggering events

116/16/2011

>Φ=< ,,,: AEKTestAgent

Φ

Two Agent Types

 Test Coordinator
 Analyze test requirements, generate test

plans, create test runners, and allocate
tasks to test runners.

 Test Runner
 Accept test cases, carry test tasks to target

host computers, and exercise test cases on
the service under test.

126/16/2011

Test Coordinator

 Knowledge
 <Services, TestCases, Runners, Tasks>

 Runners:=<ID, state, task>
 Tasks:=<sID, tcID, result>

 Actions
 Test Preparation

 ParseTestScenario, GenerateRunner

 Test Execution
 SelectRunner, SelectTestCase, AllocateTestTask, DeployRunner

 Events
 TEST_PARSED_OK, TEST_PARSED_ERROR
 START_TEST
 RUNNER_OK, RUNNER_NOT_AVAILABLE, GENERATE_RUNNER_COMPLETE
 RUNNER_REQUEST_TASK, RUNNER_SEND_RESULT, RUNNER_UPDATE

136/16/2011

Test Runner

 Knowledge
 <Hosts, Task, Configuration>

 Hosts:=<URL, Resources>
 Configuration:=<hID, tID, Parameters>

 Actions
 Coordination

 AcceptTask, ReturnResult, SyncState
 Execution

 Migrate, ExecuteTask, CollectResult
 Decision

 SelectHost, RequireTestTask, ConfigTest
 Events

 Task_Arrival, Task_Finish
 Resource_Error, Host_Error, Host_Update
 Migration

146/16/2011

Interpreter

 Action rules identify the actions to be
triggered when certain events occur.
 assertion  action

 assertion: predicates of system status after event
occurs

 To dynamic adjust behavior according to
pre-defined rules and strategies
 Agent decision making
 Reactive to changes
 Adaptive behavior

156/16/2011

Interpreter

6/16/2011 Page 16

Event
CapturingEvents Rule

Extraction
Rule

Matching

Rules

Action
Identification

Action
Planning

Action
Execution

Outline

 Research motivation
 Test agent design
 Agent-based simulation testing

 Performance testing
 Coverage testing

 Conclusion and future work

176/16/2011

Agent-Based Simulation Testing

 The generic agent design can be applied to
various testing tasks with specially designed
domain knowledge, events, actions, and
rules.

 Test agents automatically adjust test plans
and test cases to meet test objectives.

186/16/2011

Case Study 1: Performance Testing

 Performance testing analyzes system behavior under
different usage scenarios and workloads.
 E.g. upper limit of capacity and bottlenecks under extreme

load

 Two key parameters
 Test scenarios, the complexity of test cases
 Workloads, the number of concurrent requests

 Case study objective
 Try-and-test manual approach  Agents autonomous

decision for adaptive selection of scenarios and workloads

196/16/2011

Case Study 1: Agent Design

6/16/2011 20

∑ ×= ii loadcomplexityfworkload)(

Case Study 1: Experiments

 Analyze the SUT’s memory usage: read file
and merge data in memory
 Services deployed on Tomcat application server.
 Scenario #1

 Service is implemented using Java “StringBuilder”
data type with little extra memory space.

 Scenario #2
 Service is implemented using Java “String” data type

which takes up extra memory space for object
construction.

 Scenario #3
 Simulate changes in server memory configuration of

memory restrictions.

216/16/2011

Case Study 1: Results

226/16/2011

Case Study 2: Coverage Testing

 Coverage testing is to select a subset of
test cases to cover as many as software
features.

 The problem
 TestEfficiency = number of features covered /

number of test cases selected

 Case study objective
 To coordinate test agents working in parallel

with complementary coverage achievements

236/16/2011

Case Study 2: Agent Design
 Coverage Matrix

 Similarity algorithm
is used to calculate
the distance
between any two
coverage sets.

246/16/2011

[cov=CM







∉

∈
=

= ×

)(b ,0

)(b ,1
cov

 ,][cov

j

j
ij

i

i

nmij

tcCov

tcCov

CM

ji

ji
ji ss

ss
ssDis




−=1),(

Case Study 2: Experiments

 Two SUTs are exercised, each has 100 code
blocks and 1000 test cases.
 Scenario #1: test cases are sparsely overlapped,

and each case has a low coverage (2%)

 Scenario #2: test cases are densely overlapped

 10 runners are deployed for each test.
 Initialized with a randomly selected set of test

cases
 Runner cache result threshold: 3
 Coordinator synchronize threshold: 9

256/16/2011

%1|)()(| ≤ji tcCovtcCov 

%20|)()(| ≥ji tcCovtcCov 

Case Study 2: Results

6/16/2011 Page 26

Scenario #1

Scenario #2

Case Study 2: Results

6/16/2011 27

Outline

 Research motivation
 Test agent design
 Agent-based simulation testing

 Performance testing
 Coverage testing

 Conclusion and future work

286/16/2011

Conclusion

 SOA systems impose new requirements of
automatic and collaborative testing.

 Agent-based simulation provides a new way
for SOA testing
 Distributed deployment and dynamic migration
 Autonomous user behavior
 Collaborative usage scenario
 Adaptive to environment changes

 Abstract agent model to be instantiated to
address different testing tasks

 Experiments show promising improvements
compared with conventional approaches

296/16/2011

Future Work

 Agent design
 Joint intention model for agent

collaboration
 Improvement of experiments

 Scale and complexity
 Simulation on the cloud infrastructure

306/16/2011

Department of Computer Science and Technology , Tsinghua University

Thank you!
Xiaoying Bai

Ph.D, Associate Professor
Department of Computer Science and
Technology,
Tsinghua University
Beijing, China, 100084
Phone: 86-10-62794935
Email: baixy@tsinghua.edu.cn

	Design of Intelligent Agents for Collaborative Testing of �Service-Based Systems�
	Outline
	Outline
	Dynamic Architecture
	How to Test Dynamic Changes?
	New Testing Capabilities Required
	The MAST Framework
	Agent Intelligence is Key to Test Effectiveness
	Architecture Overview
	Outline
	Basic Test Agent Definition
	Two Agent Types
	Test Coordinator
	Test Runner
	Interpreter
	Interpreter
	Outline
	Agent-Based Simulation Testing
	Case Study 1: Performance Testing
	Case Study 1: Agent Design
	Case Study 1: Experiments
	Case Study 1: Results
	Case Study 2: Coverage Testing
	Case Study 2: Agent Design
	Case Study 2: Experiments
	Case Study 2: Results
	Case Study 2: Results
	Outline
	Conclusion
	Future Work
	Thank you!�

