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Dynamic Architecture

» Service-oriented computing enables
dynamic service composition and
configuration
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How to Test Dynamic Changes?

» To revalidate the re-composed and re-
configured service-based systems

Re-select test cases
Re-schedule test execution
Re-deploy test runners

» The challenges: changes occur ONLINE
Uncontrolled
Un-predictable
Distributed
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New Testing Capabilities Required

» Adaptive testing

The ability to sense changes in target
software systems and environment, and to
adjust test accordingly.

» Dynamic testing

The abiliay to re-configure and re-compose
tests, and to produce, on-demand, new test
data, test cases, test plan and test
deployment.

» Collaborative testing

The ability to coordinate test executions that
are distributed dispersed.
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The MAST Framework

» Multi-Agent based Service Testing
Framework [Bai06, Xu06, Bai07, Ma10]

MAS is characterized by persistence,
autonomy, social ability and reactivity

Test agents are defined to simulate
distributed service testing

Test Runners simulate autonomous user
behaviors

Runners are coordinated to simulate diversified
usage scenarios
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Agent Intelligence is Key to Test
Effectiveness

» How to simulate users behavior?
- How to sense and react to changes?

» How to collaborate to simulate various
scenarios?

The Needs

Environment Knowledge Representation
Change Events Capturing
Adaptation and Collaboration Rules
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Architecture Overview

Multi-Agent Based
Service Testing Framework

Test Coordinator

Test Runner

‘

Services

6/16/2011 9



Outline

&
» Test agent design

®

6/16/2011

10



Basic Test Agent Definition

TestAgent =< K,E,A, O >
K: the set of knowledge
E: the set of events
A: the set of agent actions

®: the interpreter that derives an agent’ s
action sequences based on its knowledge
and triggering events
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Two Agent Types

» Test Coordinator

Analyze test requirements, generate test
plans, create test runners, and allocate
tasks to test runners.

» Test Runner

Accept test cases, carry test tasks to target
host computers, and exercise test cases on
the service under test.
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Test Coordinator

» Knowledge

<Services, TestCases, Runners, Tasks>
Runners:=<ID, state, task>
Tasks:=<sID, tcID, result>

» Actions
Test Preparation
ParseTestScenario, GenerateRunner

Test Execution
SelectRunner, SelectTestCase, AllocateTestTask, DeployRunner

» Events
TEST_PARSED_OK, TEST_PARSED ERROR
START _TEST
RUNNER_OK, RUNNER_NOT_AVAILABLE, GENERATE_RUNNER_COMPLETE
RUNNER_REQUEST_TASK, RUNNER_SEND_RESULT, RUNNER_UPDATE
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Test Runner

» Knowledge

<Hosts, Task, Configuration>
Hosts:=<URL, Resources>
Configuration:=<hID, tID, Parameters>
» Actions
Coordination
AcceptTask, ReturnResult, SyncState
Execution
Migrate, ExecuteTask, CollectResult
Decision
SelectHost, RequireTestTask, ConfigTest
» Events
Task_Arrival, Task Finish

Resource_Error, Host_Error, Host_Update
Migration
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Interpreter

» Action rules identify the actions to be
triggered when certain events occur.

assertion = action

assertion: predicates of system status after event
OCCurs

» To dynamic adjust behavior according to
pre-defined rules and strategies
Agent decision making
Reactive to changes
Adaptive behavior
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Interpreter

Action Actlon Actlon
~— h Planning ” Identification

Rule
Matching
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Event p
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Agent-Based Simulation Testing

» The generic agent design can be applied to
various testing tasks with specially designed
domain knowledge, events, actions, and
rules.

» Test agents automatically adjust test plans
and test cases to meet test objectives.
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Case Study 1: Performance Testing

» Performance testing analyzes system behavior under
different usage scenarios and workloads.

E.g. upper limit of capacity and bottlenecks under extreme
load

» Two key parameters
Test scenarios, the complexity of test cases
Workloads, the number of concurrent requests
» Case study objective

Try-and-test manual approach > Agents autonomous
decision for adaptive selection of scenarios and workloads

6/16/2011 19



Case Study 1: Agent Design

Event Rules
Condition _ Action _ workload = »  f (complexity; ) x load,
Start FindComplexity I I
Dtar (cMin, cMax) &
Over greater(this.cCur, cMin)A | FindCompleXity [P\ = e = o= o - o o - o - o - - - - -
L \ell null(runner.1Cur) (cMin, cCur) TC !
oac - — Decroase- Test Case |
greater (this.cCur, cMin)A Complexity dapti CONTROL
equals (runner.lCur, IMin) ' (c CI‘)ul)) Adaption I
Licht less(this.cCur, cMax)A FindComplexity |
e null (runner.1Cur) (cCur, cMax) |
Load
— Therense: Test Case Task Response |
less(this.cCur, cMax)A ‘ . : A i
Y Complexity Setting Allocation ime |
equals (runner.ICur, IMax) (cCur)) I
Event Ruls | — B “‘_ ) _Hes_n:s.e_l
| Condition Action Concurrency Test - —- e I
| S . FindLoad Setting Execution o ol
Over | greater(this.ICur, IMin) (IMin, 1Cur) I
Load et Decrease- |
equals(this.ICur, IMin) request() e - I
~ques oncurrency
Light less(this.ICur, IMax) (IElllllldLliﬁl) ATABLItoOn CDNTRDL:
Load s | Tncrease: [ or e e i e SRR e
equals(this.1Cur, IMax) request()




Case Study 1: Experiments

» Analyze the SUT’ s memory usage: read file
and merge data in memory

Services deployed on Tomcat application server.

Scenario #1

Service is implemented using Java “StringBuilder”
data type with little extra memory space.

Scenario #2

Service is implemented using Java ”Stringf’ data type
which takes up extra memory space for object
construction.

Scenario #3

Simulate changes in server memory configuration of
memory restrictions.
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Case Study 1: Results
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Case Study 2: Coverage Testing

» Coverage testing is to select a subset of
test cases to cover as many as software
features.

» The problem

TestEfficiency = number of features covered /
number of test cases selected

» Case study objective

To coordinate test agents working in parallel
with complementary coverage achievements
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Case Study 2: Agent Design
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» Coverage Matrix

CM =[covj; ]mxn:

covj; =
0, b; ¢ Cov(tc;)
» Similarity algorithm

is used to calculate
the distance
between any two
coverage sets.

Dis(s;,s;) =1-
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Case Study 2: Experiments

» Two SUTs are exercised, each has 100 code
blocks and 1000 test cases.

Scenario #1.: test cases are sparsely overlapped,
and each case has a low coverage (2%)

| Cov(tc; )M Cov(tc;) [<1%
Scenario #2: test cases are densely overlapped
| Cov(tc;) N Cov(tc; ) [= 20%
» 10 runners are deployed for each test.

Initialized with a randomly selected set of test
cases

Runner cache result threshold: 3
Coordinator synchronize threshold: 9
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Case Study 2: Results

Scenario #1

Test Rounds | Runnerl | Runner2 | Runner3 | Runnerd | Runner5 | Runner6 | Runner? | Runner8 | Runner9 | Runnerl(
#1 10 10 10 10 10 10 10 10 10 10
#2 20 20 20 20 20 20 20 20 20 20
3 30 30 30 30 30 30 30 30 30 30
Coﬁgd“““or 06 06 06 06 06 06 96 96 96 06
yne
#5 100 99 99 99 99 100 99 99 100 a9
#6 100 100 100 100 100 100 100
T A ST
Scenario #2
Test Rounds | Runnerl | Runner2 | Runner3 | Runner4d | Runner5 | Runner6 | Runner? | Runner® | Runner9 | Runnerl0
#1 10 10 10 10 10 10 10 10 10 10
#2 18 18 18 18 18 18 18 18 18 18
3 22 22 22 22 22 22 22 22 22 22
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Case Study 2: Results

Test Rounds | Runner! | Runner? | Runner3 | Runner4 | Runner’ | Runner6 | Runner? | Runner8 | Runner9 | Runnerl(
#1 10 10 10 10 10 10 10 10 10 10
#) 19 19 2 19 18 19 19 19 2 17
#3 26 26 29 Al 27 20 2 26 Al 2
#4 33 3 36 35 34 35 33 33 33 33
#NR 07 03 05 06 05 03 05 03 03 06
#35 09 100 99 08 06 08 08 06 08 09
#55 100 100 100 100 100 100 100 100 100 100
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Conclusion

- SOA systems impose new requirements of
automatic and collaborative testing.

» Agent-based simulation provides a new way
for SOA testing
Distributed deployment and dynamic migration
Autonomous user behavior
Collaborative usage scenario
Adaptive to environment changes

» Abstract a.?ent model to be instantiated to
address different testing tasks

» Experiments show promising improvements
compared with conventional approaches
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Future Work

» Agent design

Joint intention model for agent
collaboration

» Improvement of experiments
Scale and complexity
» Simulation on the cloud infrastructure
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