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Dynamic Architecture

 Service-oriented computing enables 
dynamic service composition and 
configuration 
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How to Test Dynamic Changes?

 To revalidate the re-composed and re-
configured service-based systems 
 Re-select test cases
 Re-schedule test execution 
 Re-deploy test runners 
 …. 

 The challenges: changes occur ONLINE
 Uncontrolled 
 Un-predictable 
 Distributed 
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New Testing Capabilities Required

 Adaptive testing 
 The ability to sense changes in target 

software systems and environment, and to 
adjust test accordingly. 

 Dynamic testing 
 The ability to re-configure and re-compose 

tests, and to produce, on-demand, new test 
data, test cases, test plan and test 
deployment. 

 Collaborative testing
 The ability to coordinate test executions that 

are distributed dispersed. 
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The MAST Framework

 Multi-Agent based Service Testing 
Framework [Bai06, Xu06, Bai07, Ma10]
 MAS is characterized by persistence, 

autonomy, social ability and reactivity
 Test agents are defined to simulate 

distributed service testing  
 Test Runners simulate autonomous user 

behaviors 
 Runners are coordinated to simulate diversified 

usage scenarios
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Agent Intelligence is Key to Test 
Effectiveness
 How to simulate users behavior?
 How to sense and react to changes?
 How to collaborate to simulate various 

scenarios?
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Architecture Overview
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Basic Test Agent Definition 

 K: the set of knowledge 
 E: the set of events 
 A: the set of agent actions 
 : the interpreter that derives an agent’s 

action sequences based on its knowledge 
and triggering events 
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Two Agent Types

 Test Coordinator 
 Analyze test requirements, generate test 

plans, create test runners, and allocate 
tasks to test runners. 

 Test Runner
 Accept test cases, carry test tasks to target 

host computers, and exercise test cases on 
the service under test. 

126/16/2011



Test Coordinator

 Knowledge 
 <Services, TestCases, Runners, Tasks>

 Runners:=<ID, state, task>
 Tasks:=<sID, tcID, result>

 Actions 
 Test Preparation

 ParseTestScenario, GenerateRunner

 Test Execution
 SelectRunner, SelectTestCase, AllocateTestTask, DeployRunner

 Events
 TEST_PARSED_OK, TEST_PARSED_ERROR
 START_TEST
 RUNNER_OK, RUNNER_NOT_AVAILABLE, GENERATE_RUNNER_COMPLETE
 RUNNER_REQUEST_TASK, RUNNER_SEND_RESULT, RUNNER_UPDATE
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Test Runner

 Knowledge
 <Hosts, Task, Configuration>

 Hosts:=<URL, Resources>
 Configuration:=<hID, tID, Parameters>

 Actions 
 Coordination

 AcceptTask, ReturnResult, SyncState
 Execution

 Migrate, ExecuteTask, CollectResult
 Decision

 SelectHost, RequireTestTask, ConfigTest
 Events

 Task_Arrival, Task_Finish
 Resource_Error, Host_Error, Host_Update
 Migration
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Interpreter

 Action rules identify the actions to be 
triggered when certain events occur. 
 assertion  action 

 assertion: predicates of system status after event 
occurs

 To dynamic adjust behavior according to 
pre-defined rules and strategies
 Agent decision making 
 Reactive to changes 
 Adaptive behavior
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Interpreter
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Agent-Based Simulation Testing 

 The generic agent design can be applied to 
various testing tasks with specially designed 
domain knowledge, events, actions, and 
rules. 

 Test agents automatically adjust test plans 
and test cases to meet test objectives. 
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Case Study 1: Performance Testing

 Performance testing analyzes system behavior under 
different usage scenarios and workloads. 
 E.g. upper limit of capacity and bottlenecks under extreme 

load

 Two key parameters
 Test scenarios, the complexity of test cases
 Workloads, the number of concurrent requests

 Case study objective
 Try-and-test manual approach  Agents autonomous 

decision for adaptive selection of scenarios and workloads
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Case Study 1: Agent Design 
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Case Study 1: Experiments

 Analyze the SUT’s memory usage: read file 
and merge data in memory 
 Services deployed on Tomcat application server.
 Scenario #1

 Service is implemented using Java “StringBuilder” 
data type with little extra memory space.

 Scenario #2
 Service is implemented using Java “String” data type 

which takes up extra memory space for object 
construction. 

 Scenario #3
 Simulate changes in server memory configuration of 

memory restrictions. 
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Case Study 1: Results
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Case Study 2: Coverage Testing

 Coverage testing is to select a subset of 
test cases to cover as many as software 
features. 

 The problem
 TestEfficiency = number of features covered / 

number of test cases selected 

 Case study objective
 To coordinate test agents working in parallel 

with complementary coverage achievements 
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Case Study 2: Agent Design 
 Coverage Matrix

 Similarity algorithm 
is used to calculate 
the distance 
between any two 
coverage sets. 
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Case Study 2: Experiments

 Two SUTs are exercised, each has 100 code 
blocks and 1000 test cases. 
 Scenario #1: test cases are sparsely overlapped, 

and each case has a low coverage (2%)

 Scenario #2: test cases are densely overlapped

 10 runners are deployed for each test. 
 Initialized with a randomly selected set of test 

cases 
 Runner cache result threshold:  3
 Coordinator synchronize threshold: 9 
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Case Study 2: Results
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Case Study 2: Results
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Conclusion

 SOA systems impose new requirements of 
automatic and collaborative testing. 

 Agent-based simulation provides a new way 
for SOA testing 
 Distributed deployment and dynamic migration 
 Autonomous user behavior 
 Collaborative usage scenario 
 Adaptive to environment changes

 Abstract agent model to be instantiated to 
address different testing tasks

 Experiments show promising improvements 
compared with conventional approaches
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Future Work

 Agent design 
 Joint intention model for agent 

collaboration 
 Improvement of experiments 

 Scale and complexity
 Simulation on the cloud infrastructure

306/16/2011



Department of Computer Science and Technology ,  Tsinghua University

Thank you!
Xiaoying Bai

Ph.D, Associate Professor
Department of Computer Science and 
Technology,
Tsinghua University
Beijing, China, 100084
Phone: 86-10-62794935
Email: baixy@tsinghua.edu.cn  


	Design of Intelligent Agents for Collaborative Testing of �Service-Based Systems�
	Outline
	Outline
	Dynamic Architecture
	How to Test Dynamic Changes?
	New Testing Capabilities Required
	The MAST Framework
	Agent Intelligence is Key to Test Effectiveness
	Architecture Overview
	Outline
	Basic Test Agent Definition 
	Two Agent Types
	Test Coordinator
	Test Runner
	Interpreter
	Interpreter
	Outline
	Agent-Based Simulation Testing 
	Case Study 1: Performance Testing
	Case Study 1: Agent Design 
	Case Study 1: Experiments
	Case Study 1: Results
	Case Study 2: Coverage Testing
	Case Study 2: Agent Design 
	Case Study 2: Experiments
	Case Study 2: Results
	Case Study 2: Results
	Outline
	Conclusion
	Future Work
	Thank you!�

