ftware

/'GEDRGE
0@1?%?3 M:AS N

VERSI

Better Predicate Testing

Gary Kaminski, Paul Ammann, Jeff Offutt

Software Engineering
George Mason University
Fairfax, VA USA
www.cs.gmu.edu/~offutt/

offutt@gmu.edu

softv(v;al'e Z
MU o o o GEORGE
55019 Covering Logic Expressions M:*SN

* Logic expressions show up in many situations

* Covering logic expressions 1s required by the US
Federal Aviation Administration for safety critical
software

* Logical expressions can come from many sources

— Decisions in programs
— UML : FSMs and statecharts, activity diagrams
— Requirements
— SQL queries
* Tests are a subset of expressions’ truth assignments

AST 2011 © Kaminski, Ammann, Offutt 2 of 19

softv(v;al'e Z
MU o o GEORG
ifi5sny I ooic Predicates and Clauses MI*S

* A predicate 1s an expression that evaluates to a
boolean value

e Predicates can contain
— boolean variables
— non-boolean variables that contain >, <, ==, >=, <=, |=
— boolean function calls

* Internal structure 1s created by logical operators
— - — the negation operator
— A — the and operator
— v — the or operator
— — —the implication operator
— ® — the exclusive or operator
— > —the equivalence operator

* A clause 1s a predicate with no logical operators

AST 2011 © Kaminski, Ammann, Offutt 3 of 19

softv(v;al'e Z
MU . o GEORGE
o9 mis Power of I.ogic Testin M*SN

* Logic expressions encode the behavior of software

* Logic expressions define the domain of values for
which the software behaves 1n a certain way
* Logic expressions are often

— Complicated
— Subtle

— Easy to get wrong, both 1n design and implementation

Testing logic predicates is a cost-effective way to find
many subtle software faults

AST 2011 © Kaminski, Ammann, Offutt 4 of 19

EOftwég/lrtg GEORGE
somsﬁ Problems Addressed M:*SN

* This theoretical talk presents results on two
problems with logic predicate testing :

1. Redundant mutation operators for predicate testing

2. Weakness of major logic testing criterion : MCDC
* Solution based on theoretical analysis

* Solution can be immediately used to create better
tools and stronger criteria, with very slight cost

AST 2011 © Kaminski, Ammann, Offutt 5 of 19

goftware
a%?%‘fsﬁ (1) Redundancy in Mutation

* Mutation 1s widely considered to be “expensive”

r 1/‘('EEDRG

UNIVERSITY

m

* This expense 1s largely based on the high number of
test requirements—mutants

e But L1 et al. found that mutation needed fewer tests !

Number of Test
Requirements
29 Java Classes 500
4000 400
3000 300
2000 H 200
1000 100
0]] [0
LN P S R
bqg)/ \\, . '&@ &‘Z} bqgf
S P& » <

Number of Tests
29 Java Classes

Li, Praphamontripong, Offutt, An experimental comparison of four unit test criteria, Mutation 2009

AST 2011

© Kaminski, Ammann, Of futt

6 of 19

goftwég/}}?— /:iEDRGE
9911y Eliminating Redundanc M:*SN

* This 1s strong evidence that mutation tools use many
redundant operators

* A more clever mutation system should have less
redundancy

e Fewer mutants means less work for the tester ...
cheaper!

AST 2011 © Kaminski, Ammann, Offutt 7 of 19

goftware
a%?%‘fsﬁ Mutation Predicate Testing "’

* Traditional ROR operator :

Each occurrence of a relational operator (<, >, <=,
>=, =, =) is replaced by each other operator, and
the expression is replaced by True and False.

 Example:

AST 2011

—a>b

— Ml:a<b
— M2:a<=b
— M3:a>=b
— M4:a==

— M5:al=b
— M6: true

— MT7: false

© Kaminski, Ammann, Of futt

8 of 19

goftv(v;al'e Z
MU o . o GEORGE
55018 Mutation Predicate Testin M:*SON

A fault hierarchy establishes theoretical dominance
relations among faults:

If fault A dominates fault B, then any test that
detects fault A will by definition detect fault B

minimal- | jotrects . |
{MUMCUT J\‘ LIF Lau and Yu’s logic fault hierarchy

S
~
S
~

R EEIE
TOF ~ - L(l)F
L

OREF.

AST 2011 © Kaminski, Ammann, Offutt 9 of 19

EOftwég/}'& /:iEDRG
ifissni? ROR Mutant Hierarch M:*SO

If mutant A dominates mutant B, then any test that
detects mutant A will by definition detect mutant B

Mutants fora < b Mutants for a >=b
false a<=b al=>b true a>b a ==
a==>b a>b true al=>b a<=b alse
a>=>b a<b

AST 2011

© Kaminski, Ammann, Of futt

10 of 19

goftware
351,

¥ A Cheaper ROR Operator

Each occurrence of a relational operator (<, >, <=,

AST 2011

>=, =, !=) is replaced by operators as follows:

e <
* >
0<=

O!:

: <=, !=, False

= '— , False

: <, ==, True
°*>=
: <=, >=, False
: <, >, True

, ==, True

Saves four mutants for each
relational operator !

© Kaminski, Ammann, Of futt

11 of 19

goftwéaMr‘s, /:iEDRGE
trgeniy 2) Weakness of MCDC MASOR
* MCDC was invented in the early 1990s

* Research community has invented many additional
logic criteria since

— MCDC 1s weaker than MUMCUT (& Minimal-MUMCUT)
— MCDC 1s weaker than ROR-mutation

e MCDC works at the clause level

* ROR works at the relational operator level

Solution : Extend MCDC to the relational
operator level

AST 2011 © Kaminski, Ammann, Offutt 12 of 19

goftwég/[r‘?— /:iEDRGE
99113 Stronger MCDC M:*SN

« MCDC can be extended to include requirements to
kill ROR mutants

e Method :

— MCDC requires clause ¢ = x op y to have two values
True and False

— Cheaper-ROR requires c¢ to have three values :
X<Y,X==),X>Y

— The two MCDC values will always satisfy at least two of
the cheaper-ROR requirements

— Add one additional test to cover the third

AST 2011 © Kaminski, Ammann, Offutt 13 of 19

=,

softv(v;are
MU o []
"@1991113? Costis Minor DVIASON

* MCDC on a predicate with N clauses requires
N+1 .. 2N tests

* MCDC + ROR requires N more (2N+1 .. 3N tests)

* Algorithm and proof 1n paper

1111111 © Kaminski, Ammann, Offutt 14 of 19

c
z
<>\
"Eam
=
w o O
=
(A
m

software
tf155 018 Example

p=aAnbvVvec
a=(al <a2),b=(bl <=b2),c=(cl==c2)
The following test set satisfies MCDC :
T ={tl, 2, t3, t4} = { ttf, tft, tff, £tf }
Which can be refined with the following value assignments :

Test | Value| al a2 | bl b2 | ¢l c¢2 | a b C
tt | TTF |5 6 |10 11 |21 22 < | <
2 | TFT |5 6 |11 10 |21 21 ==
3 | TFF |5 6 |11 10 |21 22 > | <
t4 | FIF |6 5 |10 11 |21 22 >
RE New | (t1) |5 5 |10 11 |21 22 | ==
Os |[New| 1) |5 6 |10 10 |21 22 ==
R; New | @ |5 6 |11 10 |22 21 >

AST 2011 © Kaminski, Ammann, Offutt 15 of 19

oftware
g GMU

/:iEDRGE
9901 Recommendations IZ&SE N
1. Mutation tools

— Future mutation tools should use cheaper-ROR
— No loss 1n strength

— Savings of four test requirements (mutants) for each
relational operator

2. Logic criteria
— Extend MCDC to MCDC + ROR
— Better: Replace MCDC with Minimal-MUMCUT + ROR
— Logic testing should apply to the relational operator level

— Small increase in the number of tests

— Large increase in the testing strength

AST 2011 © Kaminski, Ammann, Offutt 16 of 19

softv(v;al'e Z
MU GEORGE
9919 Summar M:*SN

e« RTCA-DO-178B has been 1n effect for almost 20

years
* MCDC was a brilliant 1dea
* But recent advances have led to better logic criteria

* We continue to reduce the cost of applying mutation

1In practice

AST 2011 © Kaminski, Ammann, Offutt 17 of 19

softv(v;al'e Z
MU GEORGE
a@mwﬁ Future Work M:*SN

1. Empirical evidence for the increased ability of
MCDC-RORG to find faults

2. Can we apply similar analysis to reduce the number
of mutants from other operators?

— Arithmetic operators ?

— Variable replacement ?

AST 2011 © Kaminski, Ammann, Offutt 18 of 19

=,

goftv(v;are
MU
ﬂ@mwﬁ Contact @B = DIASON

Jeff Offutt
offutt@gmu.edu

http://cs.gmu.edu/~offutt/

