
Better Predicate TestingBetter Predicate Testing

of 19

Gary Kaminski, Paul Gary Kaminski, Paul AmmannAmmann, , Jeff OffuttJeff Offutt

Software Software EngineeringEngineering

George Mason UniversityGeorge Mason University

Fairfax, VA USAFairfax, VA USA

www.cs.gmu.edu/~offutt/www.cs.gmu.edu/~offutt/

offutt@gmu.eduoffutt@gmu.edu

Covering Logic ExpressionsCovering Logic Expressions
• Logic expressions show up in many situations

• Covering logic expressions is required by the US

Federal Aviation Administration for safety critical

software

• Logical expressions can come from many sources

of 19

• Logical expressions can come from many sources

– Decisions in programs

– UML : FSMs and statecharts, activity diagrams

– Requirements

– SQL queries

• Tests are a subset of expressions’ truth assignments

AST 2011 © Kaminski, Ammann, Offutt 2

Logic Predicates and ClausesLogic Predicates and Clauses
• A predicate is an expression that evaluates to a

boolean value

• Predicates can contain
– boolean variables

– non-boolean variables that contain >, <, ==, >=, <=, !=

– boolean function calls

• Internal structure is created by logical operators

of 19AST 2011 © Kaminski, Ammann, Offutt 3

• Internal structure is created by logical operators
– ¬ – the negation operator

– ∧ – the and operator

– ∨ – the or operator

– → – the implication operator

– ⊕ – the exclusive or operator

– ↔ – the equivalence operator

• A clause is a predicate with no logical operators

Power of Logic TestingPower of Logic Testing
• Logic expressions encode the behavior of software

• Logic expressions define the domain of values for

which the software behaves in a certain way

• Logic expressions are often

– Complicated

of 19

– Complicated

– Subtle

– Easy to get wrong, both in design and implementation

AST 2011 © Kaminski, Ammann, Offutt 4

Testing logic predicates is a costTesting logic predicates is a cost--effective way to find effective way to find
many subtle software faultsmany subtle software faults

Problems AddressedProblems Addressed
• This theoretical talk presents results on two

problems with logic predicate testing :

1. Redundant mutation operators for predicate testing

2. Weakness of major logic testing criterion : MCDC

of 19

• Solution based on theoretical analysis

• Solution can be immediately used to create better

tools and stronger criteria, with very slight cost

AST 2011 © Kaminski, Ammann, Offutt 5

(1) Redundancy in Mutation(1) Redundancy in Mutation
• Mutation is widely considered to be “expensive”

• This expense is largely based on the high number of
test requirements—mutants

• But Li et al. found that mutation needed fewer tests !
Number of Tests

29 Java Classes

Number of Test

Requirements

of 19AST 2011 © Kaminski, Ammann, Offutt 6

0

100

200

300

400

500

29 Java Classes

0

1000

2000

3000

4000

Requirements

29 Java Classes

Li, Praphamontripong, Offutt, An experimental comparison of four unit test criteria, Mutation 2009

Eliminating RedundancyEliminating Redundancy

• This is strong evidence that mutation tools use many

redundant operators

• A more clever mutation system should have less

redundancy

of 19

redundancy

• Fewer mutants means less work for the tester …

cheaper!

AST 2011 © Kaminski, Ammann, Offutt 7

Mutation Predicate TestingMutation Predicate Testing
• Traditional ROR operator :

Each occurrence of a relational operator (<, >, <=, Each occurrence of a relational operator (<, >, <=,
>=, =, !=) is replaced by each other operator, and >=, =, !=) is replaced by each other operator, and
the expression is replaced by the expression is replaced by TrueTrue and and FalseFalse..

• Example:

of 19AST 2011 © Kaminski, Ammann, Offutt 8

– a > b

– M1: a < b

– M2: a <= b

– M3: a >= b

– M4: a == b

– M5: a != b

– M6: true

– M7: false

Mutation Predicate TestingMutation Predicate Testing
A fault hierarchy establishes theoretical dominance

relations among faults:

LIFLIF

If fault A If fault A dominatesdominates fault B, then any test that fault B, then any test that
detects fault A will by definition detect fault Bdetects fault A will by definition detect fault B

minimalminimal--

MUMCUTMUMCUT
Lau and Yu’s logic fault hierarchy

detects

of 19AST 2011 © Kaminski, Ammann, Offutt 9

TNFTNF

LNFLNF

LRFLRF

LIFLIF

TOFTOF

ORF+ORF+

ENFENF

ORF.ORF.

LOFLOF

MCDCMCDC

MUMCUTMUMCUT
Lau and Yu’s logic fault hierarchy

ROR Mutant HierarchyROR Mutant Hierarchy

If If mutantmutant A dominates A dominates mutantmutant B, then any test that B, then any test that
detects detects mutantmutant A will by definition detect A will by definition detect mutantmutant BB

Mutants for a < b Mutants for a >= b

of 19AST 2011 © Kaminski, Ammann, Offutt 10

aa <= b<= bfalsefalse aa != b!= b

truetrue

aa >= b>= b

aa == b== b aa > b> b

aa > b> btruetrue aa == b== b

falsefalse

aa < b< b

aa != b!= b aa <= b<= b

A Cheaper ROR OperatorA Cheaper ROR Operator

Each occurrence of a relational operator (<, >, <=, Each occurrence of a relational operator (<, >, <=,
>=, =, !=) is replaced by operators as follows:>=, =, !=) is replaced by operators as follows:

•• < : <=, !=, False< : <=, !=, False

•• > : >=, !=, False> : >=, !=, False

•• <= : <, ==, True<= : <, ==, True

•• >= : >, ==, True>= : >, ==, True

of 19AST 2011 © Kaminski, Ammann, Offutt 11

•• >= : >, ==, True>= : >, ==, True

•• == : <=, >=, False== : <=, >=, False

•• != : <, >, True!= : <, >, True

Saves four mutants for each Saves four mutants for each
relational operator !relational operator !

(2) Weakness of MCDC(2) Weakness of MCDC
• MCDC was invented in the early 1990s

• Research community has invented many additional

logic criteria since

– MCDC is weaker than MUMCUT (& Minimal-MUMCUT)

– MCDC is weaker than ROR-mutation

of 19

– MCDC is weaker than ROR-mutation

• MCDC works at the clause level

• ROR works at the relational operator level

AST 2011 © Kaminski, Ammann, Offutt 12

Solution : Extend MCDC to the relational Solution : Extend MCDC to the relational
operator leveloperator level

Stronger MCDCStronger MCDC
• MCDC can be extended to include requirements to

kill ROR mutants

• Method :

– MCDC requires clause c = x op y to have two values

True and False

of 19

True and False

– Cheaper-ROR requires c to have three values :

x < y, x == y, x > y

– The two MCDC values will always satisfy at least two of

the cheaper-ROR requirements

– Add one additional test to cover the third

AST 2011 © Kaminski, Ammann, Offutt 13

Cost is MinorCost is Minor

• MCDC on a predicate with N clauses requires

N+1 .. 2N tests

• MCDC + ROR requires N more (2N+1 .. 3N tests)

of 19

• MCDC + ROR requires N more (2N+1 .. 3N tests)

• Algorithm and proof in paper

AST 2011 © Kaminski, Ammann, Offutt 14

ExampleExample
p = a ∧∧∧∧ b ∨∨∨∨ c

a = (a1 < a2), b = (b1 <= b2), c = (c1 == c2)

The following test set satisfies MCDC :

T = { t1, t2, t3, t4} = { ttf, tft, tff, ftf }

Which can be refined with the following value assignments :

Test Value a1 a2 b1 b2 c1 c2 a b c

of 19AST 2011 © Kaminski, Ammann, Offutt 15

Test Value a1 a2 b1 b2 c1 c2 a b c

t1 TTF 5 6 10 11 21 22 < <

t2 TFT 5 6 11 10 21 21 ==

t3 TFF 5 6 11 10 21 22 > <

t4 FTF 6 5 10 11 21 22 >

New (t1) 5 5 10 11 21 22 ==

New (t1) 5 6 10 10 21 22 ==

New (t2) 5 6 11 10 22 21 >

R

O

R

t
e
s
t
s

RecommendationsRecommendations
1. Mutation tools

– Future mutation tools should use cheaper-ROR

– No loss in strength

– Savings of four test requirements (mutants) for each

relational operator

of 19AST 2011 © Kaminski, Ammann, Offutt 16

2. Logic criteria

– Extend MCDC to MCDC + ROR

– Better: Replace MCDC with Minimal-MUMCUT + ROR

– Logic testing should apply to the relational operator level

– Small increase in the number of tests

– Large increase in the testing strength

SummarySummary

• RTCA-DO-178B has been in effect for almost 20

years

• MCDC was a brilliant idea

• But recent advances have led to better logic criteria

of 19

• But recent advances have led to better logic criteria

• We continue to reduce the cost of applying mutation

in practice

AST 2011 © Kaminski, Ammann, Offutt 17

Future WorkFuture Work

1. Empirical evidence for the increased ability of

MCDC-RORG to find faults

of 19AST 2011 © Kaminski, Ammann, Offutt 18

2. Can we apply similar analysis to reduce the number

of mutants from other operators?

– Arithmetic operators ?

– Variable replacement ?

ContactContact

Jeff Jeff OffuttOffutt

of 19AST 2011 © Kaminski, Ammann, Offutt 19

offutt@gmu.eduoffutt@gmu.edu

http://cs.gmu.edu/~offutt/http://cs.gmu.edu/~offutt/

